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Abstract

Background. Serious and entertainment game designers strive to create engaging,
immersive, and often, challenging games. This task involves modifying game
mechanics or environments to create experiences with differing levels of
challenge to meet player skill. The balance between different game mechanics or
environments, and the differing levels of challenge they pose, is typically un-
derstood through iterative testing. Balance and challenge becomes increasingly
important in serious games and simulation training as these games commonly
need to be engaging and impart learning content. Overburdening players’
cognitive capacity with either too much gameplay challenge or learning content
may reduce the educational effectiveness of the game.

Aim. In this research, we develop a game-based driving simulation with different
gameplay tasks to explore the impact of different types of challenges and game
aesthetics on real-time cognitive load and task performance, which may inform
serious game design. We also test the validity of a game-embedded real-time
cognitive load measuring method.

Method. A total of 31 participants undertook the driving simulation experiment
under three different aesthetic conditions using a within-subject experimental
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design. Cognitive load was measured using three different methods, and per-
formance was measured via in-game metrics. Additionally, demographic and
engagement surveys were also completed.

Results. Player performance and cognitive load respond differently to different types
of challenge, and an appropriate level of game challenge can lower cognitive load.
The embedded cognitive load measure was validated as an effective method for
evaluating real-time cognitive load during gameplay.

Conclusion. The results demonstrate the validity of a dual measure approach for
future adaptive serious games and simulation training environments combining
performance and cognitive load. An easy to implement, and robust, in-game
measure for cognitive load has been validated in real-world conditions. From
these results, a system for dynamic difficulty adjustment is proposed tailored
towards serious games and simulation.

Keywords
dynamic difficulty adjustment, serious games, adaption, simulation training, cognitive
load

1 Introduction

Serious games and simulation training applications are used in a broad range of ed-
ucation and training settings (Chemikova et al., 2020; Csikszentmihalyi et al., 2014;
Wilkinson, 2016). Achieving the optimum balance of gameplay difficulty and learning
content is challenging due to player proficiency, prior knowledge, and learning aptitude
(Ravyse et al., 2016). Dynamic difficulty adjustment (DDA) is a form of adaption in
games that helps address differing and evolving player skill in real-time. Entertainment
games seek to achieve the optimum level of challenge for players, either through pre-
determined difficulty levels or via the application of DDA systems. A similar goal is
desired in serious games, however, this incorporates the additional requirement of
ensuring effective learning content delivery. DDA is explored in a serious games
context to adapt the serious game to the needs of the learner and ultimately achieve
better learning outcomes (Landsberg et al., 2010). Striking the right balance of
challenge is critical to maximizing the chance of positive learning outcomes by both
engaging the learner and helping achieve a Flow state (Hamari et al., 2016), or similar
positive motivational or affective states.

The success of serious games is greatly influenced by participant prior knowledge,
pace of learning, and learning design implementation using methods such as scaf-
folding (Chemikova et al., 2020). How much the player knows on a subject, or how
readily they grasp the learning material, can greatly influence the level of engagement
they have for the activity. One way to address this issue is via DDA, where both the
gameplay and learning content are varied to adjust the challenge in a game. This dual
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adjustment is critical, as it is feasible a player may understand the learning content but
have less developed gameplay skills and vice versa. For example, when using a driving
training game, someone may know the rules of the road very well but have never played
a driving game before and struggle with the gameplay controls. Therefore, adjusting the
gameplay to be easier, but increasing the learning challenges as a separate factor, may
be beneficial. A recent literature review on DDA identified that in complex 3D game
environments, a multiple measure combined with a multiple adaption strategy is more
likely to be effective (Seyderhelm & Blackmore, 2021). However, very few serious
games systems adopted this approach, with the same review showing only 10.2% of
studies incorporating DDA systems incorporate dual measures (Seyderhelm &
Blackmore, 2021).

2 Literature Review

The following section provides a review of literature on the key concepts of Flow
Theory (Section 2.1) and Cognitive Load Theory (Section 2.2) relevant to DDA in
serious games and simulation training.

2.1 Flow Theory

Serious games are often considered in respect of how they improve training or learning
through their impact on motivational, behavioral and/or cognitive processes; recent
indications are that for best results these three aspects need to be combined (Krath et al.,
2021). Reflecting this, there are many educational, behavioral and psychological
theories applied to serious game design with overlapping concepts and goals (Krath
et al., 2021). Krath et al., identified 10 core theoretical principles that can be applied to
serious game design, including Flow theory and Cognitive Load theory. Within DDA
system research, Flow theory is the most referred to concept (Seyderhelm &
Blackmore, 2021). Similarly, the concepts of engagement, immersion and presence
are often referred to in serious game design and have many overlaps with the concept of
Flow (Hookham & Nesbitt, 2019).

In some instances, a state of flow may not be attainable, or desirable, however it can
be considered as a related state to engagement (Hookham &Nesbitt, 2019). Either flow
or engagement remain desirable states depending on the purpose of the training (Kiili,
2006; Mills et al., 2013). Further research has indicated that motivation has a strong
impact on learning success and “[F]low was an especially strong predictor of moti-
vation” (Özhan & Kocadere, 2020). In this context, using the concept of flow as a basis
for developing a serious game DDA system is valid: even if a flow state is not achieved,
flow is interlinked with other motivational theories and it follows that a general increase
in motivation is therefore likely, improving learning outcomes.Lastly, a key aspect of
the concept of flow is to do with the challenge of the activity being consummate with
the capability of the participant. A DDA system strives to adapt the challenge of a game
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(or serious game in this context) to match the participants ability. Achieving the correct
challenge is a strong indicator of learning success (Hamari et al., 2016).

Therefore, an ideal goal for a DDA system is for users to achieve a ‘flow state’
(Alves et al., 2018). Flow is a mental state akin to being in the zone, or achieving
absorbed and focused engagement (Csikszentmihalyi et al., 2014). DDA research often
describes flow as an appropriate level of challenge, whereby the difficulty of the activity
is neither too hard (leading to frustration) nor too easy (leading to boredom).
Csikszentmihalyi et al. (2014) define the conditions for attaining flow in further detail,
which include three primary criteria that need to be met:

1. A “clear set of goals” that add “direction and purpose to behavior” (p.232); this
also is influenced by, and influences, player motivation with both intrinsic and
extrinsic motivation being impacted.

2. “A balance between perceived challenges and perceived skill” (p.232); this is
the aspect of flow most commonly discussed in DDA research for games, and
helps lead to mastery of a task or mechanic.

3. Flow requires “clear and immediate feedback” (p.232); this informs the par-
ticipant how they are performing and can identify where the participant needs to
focus, as long as this area of focus is not perceived as too difficult.

Understanding these three principles of flow may help lead to better serious game
experiences (Hamari et al., 2016) and is a valid serious games design approach (Kiili,
2006).

2.2 Cognitive Load Theory (CLT)

In a serious game, the complexity of the environment, game aesthetics, and different
mechanics may impact on player performance in a variety of ways. This impact is best
described through the prism of cognitive load theory (CLT) which explains how the
brain processes information in working memory, which is limited, and consolidates it
into long-term memory schema (Paas et al., 2004). CLT refers to three main cognitive
load structures: Intrinsic, extraneous, and one termed germane processing. Intrinsic
cognitive load refers to the essential complexity of the material, or how much mental
effort is required in order to grasp the information contained (Sweller, 2011). Ex-
traneous cognitive load considers the way material is presented, or actions required of
the learner; that is, how much mental effort is needed to receive and perceive the
information (Sweller, 2011). This can also be impacted by environmental conditions
(Choi et al., 2014).

Finally, germane processing refers to the amount of mental effort used to store
information in working memory and into long-term memory schema (Sweller et al.,
2019).

Good design reduces extraneous cognitive load, manages intrinsic load, and fosters
positive germane load. A balance must be struck between the information that relates to
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gameplay versus the learning content. Distracting gameplay may help foster flow
through challenge and excitement but serve as extraneous cognitive load impacting
absorption of learning content. Ideally, a balance between the learning and non-learning
content to promote flow through engagement and fun, balanced against cognitive load
to achieve the best learning outcomes, is desired (Chang et al., 2017). Player per-
formance in this context may be simple to measure, for example, through correct
answers, time taken, or a plethora of other metrics. What is more challenging to
measure in real-world settings is cognitive load, in a cheap, easy to implement, robust
and reliable manner.

This dichotomy presents two opportunities to challenge the player, and by extension,
potentially regain interest and focus. One is via the learning content and the second is to
add complexity, variation, or challenge into the gameplay elements. These opportu-
nities can be realized through DDA, which can adapt the gameplay and learning content
separately driven by real-time measures of player performance and cognitive load.

A DDA system developed with a better understanding of the challenge impacts of
game design, aesthetics, and pedagogical theories, may improve the likelihood of
achieving a state of flow. A flow state may enhance the value of the training material
(Hamari et al., 2016) and a flow state may be sustained when an appropriate DDA
system is applied, potentially leading to mastery (Figure 1).

Figure 1. Flow channel combined with cognitive load capacity leading from novice to mastery.
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The concepts of flow and CLT present challenges in serious games in knowing what
to change and what impact that may have on player performance, learning, engagement,
flow, and cognitive load. The research presented in this paper seeks further under-
standing of these factors to inform the design and implementation of appropriate serious
game DDA systems that can potentially approach the effectiveness of one-on-one
training.

3 Experiment: Cognitive-Effect Driving Game

The COGNITIVE-EFFECT DRIVING GAME (CEDG) is a first-person 3D driving
game developed for this research with specific goals to test cognitive load and per-
formance. The CEDG incorporates a range of player performance measures, and tests
an embedded cognitive load measure termed the virtual detection response task
(virDRT) (see Section 3.2). Full specification of the CEDG is beyond the scope of this
paper and is fully defined in (Seyderhelm & Blackmore, 2021b). The CEDG has been
designed to assess the impact of different aesthetic conditions on player cognitive load
and performance across a wide range of tasks in a complex virtual environment. The
CEDG also tests the layering of primary and secondary tasks to allow a robust
measurement of cognitive load using the virDRT approach.

The CEDG design consists of three levels, each having the same track layout with
different surrounding biomes consisting of a city, forest, and desert environment
(Figure 2). Each zone has a different challenge or task (Table 1). For each level, the
player completed two circuits - one with the virDRT active and one without. The order
of each level is randomized, and within each level, the order in which the virDRT was
active is also randomized.

4 Method

This research explores how different gameplay tasks, difficulties, and aesthetics impact
player performance and cognitive load in a complex driving video game. Additionally,
we seek to validate an embedded game controller-based version of the detection re-
sponse task (DRT) as a cost effective and easy to implement measure of cognitive load.
Specifically, we seek to answer the following research questions:

Figure 2. The three biomes of the CEDG: city (left), desert (middle), and forest (right).
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RQ1. Does an embedded in-game cognitive load measure (virDRT) effectively
capture cognitive load without impacting task performance?

RQ2. How do different tasks and challenges affect cognitive load and performance
in a complex driving game-based environment?

To address these questions, data was collected using a within-subjects experimental
design, approved by the Human Research Ethics Committee [details omitted for
double-anonymized peer review].

4.1 Demographics

The CEDG experiment was conducted across two weeks with staff or students at the
University of Newcastle, Australia in October 2020. Prior to commencing, all par-
ticipants (n =33) completed a demographic and game preferences survey. Participants
ranged from 19 to 50 years old (mean=28.03, SD=8.97). Of the 33 participants,
23 identified as male and 10 identified as female; 30 of the participants were right-
handed, 2 left-handed, and one ambidextrous. Each participant session took ap-
proximately 90 minutes, and included obtaining informed consent, providing a task and
intervention briefing, pre-game demographic and game preference surveys, CEDG
tutorial, playing the CEDG, and post-test completion of the NASA-TLX and Game
Engagement survey. Two participants experienced technical issues during the ex-
periment leading to their data being rejected leaving 31 participants (22 males and

Table 1. Zone and their challenges.

Zone Challenge or task

Zone 1 Count specified colored vehicles parked by the road
Zone 2 The player must listen to, recall and follow a series of verbal driving directions and

apply them through a suburban street area, with traffic and turns
Zone 3 Short zone
Zone 4 Longer driving section in which absolute difficulty (Adams, 2014) of the primary task is

increased
Zone 5 Directed to follow and maintain a distance behind another vehicle, the player also

needs to recall the number of cars counted in zone 1
Zone 6 Continue to follow vehicle from zone 5, but now with rain and thunder
Zone 7 Drive through a narrow entrance and proceed in a moderately long zone with rain and

thunder
Zone 8 Drive through a tunnel with only car headlights causing limited visibility.
Zone 9 Short zone
Zone 10 The player has to cross a bridge with roadworks, one lane is blocked and the player

must judge the distances and timing of oncoming cars to proceed to waiting bays or
continue across the bridge safely
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9 females). Of these, 22 (70.97%) were 19-30 years old, five (16.13%) were 31-40, and
four (12.90%) were over 40 years old. Accordingly, 24 (77.42%) of the participants
were 34 or younger, which is the average age of gamers in Australia (Brand et al.,
2019).

4.2 Cognitive Load and the Virtual Detection Response Task (virDRT)

We propose that measuring cognitive load alone is insufficient to fully inform a robust
DDA system. Cognitive load implies the cognitive burden but doesn’t necessarily
indicate where this burden originates; it doesn’t identify if cognitive load is high due to
task complexity or the extraneous load is too high due to poor task design and pre-
sentation, necessitating the use of performance measures, differing from game-to-game
dependent on task type. A comprehensive categorization of performance measures and
types is detailed in (Seyderhelm & Blackmore, 2021).

During the CEDG experiment, cognitive load was measured using the virDRT
employing the standards detailed in International Organization for Standardization
(2016).. In addition, the NASATask Load Index (NASA-TLX) was used to provide an
overall assessment of the cognitive load from the entire gameplay period. The design
and use of the virDRT is described below.

The virDRT is delivered as a secondary task by measuring the reaction time relating
to a stimulus while a person performs a primary task or function. A decrease in the
response time to the secondary task stimulus indicates an increased cognitive burden
from the primary task (Paas et al., 2003). A DRT requires minimal impact on learning
tasks and therefore minimal cognitive impact in itself (Brunken et al., 2003) It should
also be easy to grasp, recognize, and respond to. A wide range of secondary task
methods have been developed in different experiment settings (Brunken et al., 2003;
Chandler & Sweller, 1996; Haji et al., 2015; Park & Brünken, 2015; Sweller, 2011), and
the DRT has been shown to be particularly successful and relatively simple to im-
plement. The virDRT used in the experiment is very similar to the remote DRT de-
scribed by Harbluk et al. (2013), however it is integrated into the game controller via
shoulder button presses (Figure 3a) rather than via a separate finger switch typically
used (Harbluk et al., 2013). By integrating the virDRT into the UI layer of the serious
game and using a standard game-controller, ease of use and deployment opportunities
for a DRT-based cognitive measure are greater and cheaper, as the need for specialized
equipment is removed. The virDRT is designed to be noticeable without being ob-
trusive, and the player was tasked to respond to the virDRT as the least important
element of their current activity.

The virDRT records the reaction time (RT) to the stimulus, in this case a red dot to
the lower left of the screen (Figure 3b), as well as the hit rate (HR), which is the number
of times the player successfully responded to the stimulus within the allotted time. The
RT records the result of a hit from 100ms to 2500ms; anything outside of this is
captured in the HR as 0 (miss) and 1 (successful hit). The standard requires a minimum
of five data points (hits or misses) to provide valid cognitive load measurement.
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Therefore, for each zone in the CEDG each group of five to nine virDRT responses are
averaged to provide a measure of current cognitive load. These measures are grouped
by zone as this experiment seeks to understand the impact of different challenges and
aesthetic conditions on a zone-by-zone basis.

RQ1 assesses the efficacy of the virDRT for measuring cognitive load. This was
compared to the ISO 17488:2016 (Standardization, 2016) that details the validated
DRT methods and also includes a method for checking data quality, providing a
frequency histogram for reaction time (RT) as a guide. Each participant’s virDRT RT
(Mean=0.7 sec; SD = 0.29 sec) was plotted for visual comparison to the ISO his-
togram. This comparison confirms that the data collected follows the expected RT
response distribution pattern specified in ISO 17488:2016, validating the virDRT data
(Figure 4).

4.3 Performance Measures

We propose that combining measures of cognitive load and performance will be
more reflective of task difficulty. For the primary task (driving), performance was
measured by three elements: time taken, lane deviations, and crashes into other
vehicles or objects. The vehicle had a maximum speed of 80 kilometers per hour
(kph) to create a standard baseline where driving skill would differentiate perfor-
mance. The participants were briefed to drive as swiftly and accurately as possible,
avoiding accidents and lane deviations. Lane deviation has been used extensively in
driver studies as a measure of performance (Beede & Kass, 2006; Irwin et al., 2015;
Shinar et al., 2005).

Additionally, secondary tasks were designed to test different cognitive processes
(Table 2).

A key element for defining the difficulty of challenges in the CEDG for comparisons
is to identify a meaningful method for combining and assessing time taken and driving

Figure 3. (a) (Left) The game controller used in the CEDG, with the shoulder buttons used as
virDRT response triggers. (b) (Right) The virDRT is active in the city level (Zone 2), the red
dot towards the bottom left.
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accuracy. Here we rate each zone to enable a meaningful comparison of zone difficulty
irrespective of length using a single score for each zone. Zones were analyzed and
plotted reflecting the total range of time taken, as well as the combined total of crashes
and lane deviations (driving errors). This produced a range for each zone that was then
divided by 10 to provide discrete, evenly distributed groupings (Table 3). The
groupings were given a score ranging from 1 – 10, with one being the quickest time and
ten being the slowest. Driving accuracy (derived from crashes and lane deviations) was
assessed similarly, however a result of zero (0) crashes or deviations was given a score
of 1 (as it was always the best result) and the remainder grouped according to variance
(Table 3).

Time score and accuracy score were then multiplied together to provide a final
combined score with a possible range of 1 - 100. This produces a normalized zone
difficulty score accounting for the different lengths.

Figure 4. Frequency histogram from the CEDG, the blue line, overlayed with the ideal
histogram example from ISO 17488:2016 (Section 6.10, page 13), black line.

Table 2. Task description and performance measure used.

Task Description Measure

Count specific-colored vehicles parked beside a
section of the road. Four zones later the player is
asked to recall and input the number counted.

This is marked as right (1) or wrong (0).

The player is given a series of directions to follow in a
residential zone and must remember them.

If the player successfully followed the
directions, yes (1) or no (0).

The player is asked to follow a car maintaining a
distance range.

One penalty is awarded per second for
failing to stay within the range.
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5 virDRT Results

The following sections present the results of the statistical analysis of the experimental
data (descriptive statistics and two-tailed T-Tests) to assess if the virDRT impacted
overall player performance, validating the usefulness of the virDRT approach.

The virDRT was active 52 times in the first circuit of each level versus 41 in the
second circuit. This equated to 55.9% of the time in the first loop compared to 44.1% in
the second. The CEDG was developed using Unity and C#, with the inbuilt random
integer function used to derive the order of the virDRT. There is no reported bias in the
Unity random integer function, and it is likely a higher number of instances may have
evened out the percentages.

5.1 virDRT Impact on Performance and Cognitive Load

This section details the results used to determine if there was a statistically significant
impact from the virDRT on player performance (defined as time taken and driving
accuracy). Each zone is played twice, both with and without the virDRT active, so the
impact on performance of the virDRT can be assessed. Performance was measured in
three ways: time, accuracy, and secondary task accuracy. These results were then used
to create a total combined score (Section 4.3).

The total combined scores were collated, and a paired two tailed T-Test was used to
identify any differences for each zone (Table 4). The results indicate that there is no
statistically significant difference in performance when the virDRT is active or not
active for all but Zone 9, which is marginally significant at the 0.05 alpha level, Zone
9 results are discussed in further detail below.

Table 3. Presents an example (Zone 1) of the way time and accuracy were grouped and scored
from 1 – 10; the count columns show howmany times across all levels and players that range was
achieved (31 players x 3 levels x 2 laps = 186 instances).

Time taken
(range) Time count Time score

Driving
Accuracy count Accuracy scoreAccuracy (range)

20.608-27.108 149 1 0 49 1
27.108-33.608 18 2 1 42 2
33.608-40.108 5 3 2-3 51 3
40.108-46.608 7 4 4-5 23 4
46.608-53.108 3 5 6-7 9 5
53.108-59.608 2 6 8-9 6 6
59.608-66.108 1 7 10-12 3 7
66.108-72.608 0 8 13-15 2 8
72.608-79.108 0 9 16-18 0 9
79.108-85.608 1 10 19-21 1 10
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5.1.1 Zone 9 Analysis. The only zone with a marginally statistically significant dif-
ference is Zone 9, so a more detailed analysis was undertaken for time and accuracy
individually, to determine where the near impact originated. The following table
(Table 5) lists the results of a two tailed T-Test for time and accuracy, for each level, of
Zone 9.

As detailed in Table 5, time taken to complete the level for Level 3 is the only
statistically significant result. Reviewing the data reveals that in Zone 9, players were
quicker overall when the virDRT was active. Table 6 provides further analysis of time
taken for Zone 9.

Zone 9 was also the only zone that took less time in all three levels when the virDRT
was active. The virDRT had no programmed impact on vehicle speed, and no other
zones demonstrated this anomaly indicating that other factors were the likely cause of
the difference, such as the number of NPC vehicles, a level design anomaly, and/or
practice effect (Duff et al., 2007).

5.2 Summary of virDRT Validation Results

The virDRT was shown to collect input results commensurate with the DRT standard
data frequency histogram indicating the data collection was valid. The use of the
virDRT had no statistically significant impact on player performance in a complex
driving game. Therefore, the game console controller-based implementation of the
virDRT was effective and presents as a suitable and easy to implement method for
measuring real-time cognitive load during game-play.

6 Impact of cognitive load and performance by zone and
challenge in the CEDG

The cognitive load and performance measures were used to rate the difficulty of each
type of challenge in the CEDG. Each zone consists of different challenges to the
primary task (driving) as well as additional tasks such as counting vehicles, following
directions, or judging distance. To assess difficulty, each player received a total score

Table 4. Mean, standard deviation and test results (p-value) of the total combined scores for
each individual zone.

Zone 1 2 3 4 5 6 7 8 9 10

DRT - M 5.12 14.32 4.14 13.54 7.41 6.85 6.97 3.83 3.10 9.02
DRT - SD 10.05 13.46 5.57 16.86 11.46 5.92 11.89 12.11 3.09 13.49
No DRT - M 3.96 14.42 4.49 11.27 5.30 6.81 5.90 2.75 4.19 6.69
No DRT - SD 6.79 16.96 10.73 13.39 5.85 9.06 14.43 6.21 4.39 8.82
t(92) 1.04 �0.06 �0.29 1.73 1.77 0.04 0.60 0.80 �2.01 1.55
p-value .30 .95 .77 .09 .08 .97 .55 .42 .05a .13

aMarginally statistically significant result.
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per zone via the combined measure system (Section 4.3). These scores were then added
together for all three levels providing an indication of zone difficulty (Figure 5).

Table 7 lists the zones in order of difficulty and identifies if a secondary task was
involved.

6.1 Impact of challenges on cognitive load

When assessing the data collected from a DRT, it is important to consider both the
response time and the misses (non-responses) as both data provide information on
current cognitive burden (Standardization, 2016; Vandierendonck, 2017). The inverse
efficiency score (IES) (Bruyer & Brysbaert, 2011; Vandierendonck, 2017) method was
selected to derive a single cognitive load value. The IES includes the virDRT reaction
time (RT) and instances where the virDRT signal is not responded to, termed the
proportion of errors (PE). The IES is expressed as:

IES = RT/1�PE.
To understand the cognitive impact of each zone, the IES was applied on a per zone

basis. However, there were 18 total instances across all levels, zones and players in
which there was no response to the virDRT recorded. This null response is taken to
mean a high cognitive load is in effect, and a DDA system can respond accordingly.
However, for this analysis where the zone cognitive difficulty is being sought, instances
of a null result are replaced with the maximum score that the player could have achieved
if they had made the minimal possible response. For example, player 104923 failed to
record any responses in Zone 7 of the first level where there were six virDRTstimuli. To
derive a maximal score, using the details outlined in Section 4.2, we take the maximum
response time of 2.5 seconds and the minimum response value of 1 response and divide
by 1- proportion of errors: 2.5/(1-0.833) = 14.997. The methodology explained here,
and in Section 4.2, was applied to each of the 18 instances of a null result to derive a
maximal score proxy so that cognitive challenge could be determined for each zone.

Table 5. T-Test results, p-value, for zone 9 for time and driving accuracy across all three levels.

Statistic Category Level 1 Level 2 Level 3

Time 0.79 0.12 0.02a

Accuracy 0.26 0.80 0.54

aindicates a statistically significant result.

Table 6. Time taken analysis for Zone 9.

Category virDRT active virDRT inactive

Total Time Taken 390.76 410.28
M - Time per level 12.605 13.235
SD - Time per level 1.662 1.743
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The sum of the IES scores (Figure 6) for each zone provides a score for how
challenging each zone is from a cognitive load perspective, allowing zone difficulty
based on performance (Section 5.1) to be compared to cognitive load for a more
holistic view.

Zones 5 and 10 have the greatest impact on cognitive load. Zones 1, 2, 5 and 6 all
include additional tasks, while Zone 10 includes the requirement for judgement and
spatial assessment. In comparing task difficulty with cognitive load (Figure 7), there

Figure 5. The total difficulty scores for each zone.

Table 7. Zones listed in order of overall difficulty.

Zone
Total
Score

Secondary
Task Task

Zone 2 2673 Yes Recall and follow directions
Zone 4 2307 No No secondary task, more difficult primary task
Zone
10

1438 No Judge distance and space

Zone 6 1270 Yes Follow vehicle and maintain distance with weather
Zone 7 1197 No Narrow entrance and weather
Zone 5 1174 Yes Follow vehicle and maintain distance, recall count task

(Zone 1)
Zone 1 844 Yes Count cars
Zone 3 797 No Short zone
Zone 9 666 No Short zone
Zone 8 607 No Drive through tunnel with low light
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are some areas of interest. For example, Zone 4 is ranked as the second most
challenging zone from a performance perspective, and yet has a relatively low
cognitive load score (third lowest overall). This may be explained by Flow theory
(Csikszentmihalyi et al., 2014) where the correct level of challenge engenders a state
of high engagement and focus. This high level of focus indicates that cognitive
resources are martialed to a single task and other distractions have minimal impact
leading to a reduction of cognitive load. Zone 1 was rated as quite easy from a
performance perspective, but the player had the additional task of counting specific
color vehicles as they were driving, and as a result, cognitive load in this zone was the
4th highest overall.

6.2 Per Zone and Level Comparison of Cognitive Load and Performance

Figure 7 combines the results for cognitive load and performance. This makes the
relationship between cognitive load and performance clear, although there are some
notable differences, particularly Zone 5 where the graph lines head in opposite di-
rections, and Zone 2 for different reasons.

Zone 2 has difficult driving conditions; it was ranked as the hardest overall
(Figure 5) and had the 5th highest overall score for cognitive load (Figure 6). However,
there were very large differences between the first level and subsequent in both
performance and cognitive load (Figure 7). This demonstrates a strong practice effect
(Duff et al., 2007), and possibly some form of strategy, for example cue utilization
(Brouwers et al., 2016).

Figure 6. IES-based combined cognitive load score for each zone for all three levels.
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6.3 Discussion on Challenge

The CEDG involved different challenges or variations to the primary task of driving,
including changes to lighting (Zone 8), adjustment of the absolute difficulty (Zone 4),
and addition of complexity by incorporating distance and safety judgements (Zone 10).
Zones 1, 2, 5 and 6 are discussed in Section 6.4 below as they contain secondary tasks
with specific separate measures and results.

Zones 3 and 9 were designed to be relatively short with easy driving difficulty, which
is reflected in both performance and cognitive load measures. These zones serve as a
good baseline for measuring the impact of other driving challenges.

Zone 4 was mentioned in Section 6.1, but it is worth reiterating that the ‘right’
level of challenge can impact cognitive load positively and potentially help en-
gender a state of flow and enhance learning (Csikszentmihalyi et al., 2014; Hamari
et al., 2016). The driving task (ie. sharp corners and twists) in this zone was
hard but had low cognitive load, indicating heightened engagement or a sense
of flow.

Zone 7 is one of the longer sections and included a narrow entry into a rain and
thunder affected zone, allowing exploration of the impact of aesthetic only weather
effects on performance and cognitive load. Zone 7 is equivalent to Zone 5 and 6 in
terms of primary task difficulty but resulted in lower cognitive load. This suggests that
purely aesthetic weather conditions have minimal impact on either cognitive load or
performance. However, navigating the narrow entry to the zone, and the type of road
made it the fifth hardest zone.

Figure 7. Cognitive Load (CL) and performance (Perf) overlaid for comparison.
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Zone 8 explores the impact of lighting conditions, a reduction in view distance, and
visually restricted environment (Figure 8). It required the player to drive through a
tunnel with only vehicle headlights. The tunnel appears more cramped due to the
addition of walls and a center crash barrier; however, these do not restrict road di-
mensions. The challenges in this zone had no negative impact on the difficulty; this
zone was the easiest overall in terms of performance, and 6th lowest for cognitive load.
This suggests narrowing the field of view and providing clear visual guidance, may be
an effective method to make tasks easier. In short, this zone may reduce cognitive load,
and enhance performance, by the subtraction of extraneous aspects of the environment
(Choi et al., 2014).

Zone 10 includes a long bridge to cross with contraflow barriers; the driving lane is
blocked off and there are two waiting bays for the player to reach (Figure 9). There is
oncoming traffic, and the player must judge the correct time to progress or wait until
the entire bridge is clear of traffic. This zone explored the cognitive burden of judging
distance, speed, and timing. Spatial judgement tasks like this have been explored in
other driving environments that have indicated this type of task is complex
(Alexander et al., 2002; Feldstein, 2019). Zone 10 was ranked 3rd hardest overall for
performance and produced the highest overall cognitive load burden. In principle, the
primary driving task was easy with a straight road and barriers that reduced the road
access. Yet adding oncoming traffic and the need to judge when to drive, or when to
wait, added to the challenge and cognitive load greatly. Adding a risk factor element
based on spatial judgement, speed, and timing can increase the level of difficulty and
cognitive load.

Figure 8. Inside zone eight, the low light tunnel section.
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6.4 Analysis of Secondary Task Effects on Performance

There were four zones with specific secondary tasks in addition to driving, the fol-
lowing section explores the results from those secondary tasks and seeks to compare
secondary task performance with primary task results by considering zone scores and
penalties (Table 8).

6.4.1 Zone 1 –Observation and Recall as a Secondary Task. In Zone 1 players were tasked
to count how many specific-colored cars were parked beside the road (Figure 10).
Later, in Zone 5, players were asked to recall the number counted with the result
recorded as a binary pass (1) or fail (0) in each circuit completed. The players
completed three levels, with two circuits of each level, requiring them to complete
this task six times. From the overall results, this task was completed correctly in
73.12% of instances (Table 8).

The total for the first level was much lower (worse) than the following two. In-
terestingly, the third level had worse performance than the second level, which may
have been caused by external factors; we suspect fatigue. Overall, this indicates practice
effect (Duff et al., 2007) as a factor in the results.

The counting task appears to have had little impact on performance (Figure 5),
however the recall element was clearly a challenge for the first circuit with a 56.45%
success rate (Table 8). It is likely that after a relatively poor performance at this task, and
being provided with visual and auditory feedback, the need for greater focus or ap-
plying a strategy was realized. This is relevant to serious games designers who may
include similar counting and recall tasks; the first attempt at the task is unlikely to be

Figure 9. Zone 10 bridge contraflow with oncoming traffic.
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particularly successful from a learning context until players develop a strategy and
realize the importance of the task through in-game feedback.

6.4.2 Zone 2 – Follow & Remember Driving Directions. In Zone 2 players were recorded as
either correctly (1) or incorrectly (0) following driving directions. The directions
consisted of either three or four verbal instructions given at the start of the zone, that the
player needed to remember and follow for the remainder of the zone. For example:
“Take the next right, take the first left, then the next right and at the end turn left.”

This task was completed correctly in 71.51% of instances (Table 8). This suggests
that following and remembering directions may be marginally more difficult than the
counting (Zone 1) and recalling (Zone 5) task.

Table 8. Scores for each secondary task zone.

Zone Result Category 1st Level 2nd Level 3rd Level

Zone 1 Score 35 53 48
Zone 1 Percent Correct 56.45% 85.48% 77.42%
Zone 2 Score 35 45 53
Zone 2 Percent Correct 56.45% 72.58% 85.48%
Zone 5 Penaltiesa 626 359 302
Zone 6 Penaltiesa 368 357 316

aSix player results were removed due to a design error in Zone 5 (Section 5.5.3).

Figure 10. Zone one (1) – player tasked to count specific color cars parked on the side of the
road.
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Following and remembering directions was clearly challenging, particularly the first
time encountered, and the players improved substantially in a relatively short time
(Table 8). Using audio directions that require memory and recall in different locations
and with differing complexities may have a strong impact on cognitive load and
performance, known as a transient information effect (Sweller et al., 2019). In the
CEDG, the zone layout and style of directions were the same, and players clearly
demonstrate practice effect (Duff et al., 2007). It would be valuable to further explore
the use of audio directions with a recall component in different settings to understand
the impact of this type of challenge more fully.

6.4.3 Zone five and six – following a vehicle maintaining a distance. Zones 5 and 6 consist of
the same basic secondary challenge with a fewminor differences and are thus addressed
together. In these zones players follow a specified vehicle maintaining a distance
between 10 and 18 meters, with in-game text and visual elements to aid in judgement
(Figure 11). For every second spent either too close or too far away, the player suffers a
penalty point that accumulates over the duration of the task. In the first circuit of each
level, the car being followed drives slower than the one in the second circuit. Un-
fortunately, Zone 5 has a collision error near the start of the zone, that could cause
players to crash unexpectedly leading to higher penalty scores. This had a knock-on
effect to Zone 6 for those players as they sought to catch up.

Approximately halfway through Zone 5 the game pauses and the player must recall
the number of cars they counted in Zone 1, they receive audio and visual feedback as to
whether they were correct or not.

The following task from Zone 5 continues into Zone 6 and introduces a change in
weather and lighting effects with rain, thunder, and lightning (Figure 12).

Six player results were removed from Zone 5 due to the impact of the collision error
detailed above. Performance improves markedly across the levels (Table 8). Zone 5 was
the 5th hardest zone in respect of performance (Figure 5), but the second hardest in
respect of cognitive load (Figure 6). Zone 6 was the 3rd hardest in respect of cognitive
load, indicating that the addition of the recall of cars counted from Zone 1 has an impact

Figure 11. Zone 5 showing the correct distance range (left) and getting too close (right).
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on cognitive load in Zone 5, suggesting designers need to be mindful of how tasks are
stacked in simulations and serious games.

There was a slight impact on performance from the addition of weather effects from
Zone 5 to 6. However, there was no significant difference between the performance of
Zone 5 (M = 6.35, SD = 9.13) and Zone 6 (M = 6.83, SD = 7.63) indicating that adding
aesthetic-only weather effects has no significant impact on performance (t(185) = -0.65,
p = .517).Weather may have a positive impact on player engagement and enjoyment,
and is worth utilizing in order to enhance realism in simulations irrespective of the
impact on performance or cognitive load (Roberts & Patterson, 2017).

7 Understanding the tasks and challenges for future game
design and DDA implementation

Section 6 detailed the impact of different challenges and secondary tasks on both player
performance and cognitive load. Specifically, the section determined which challenges
were most impactful in terms of performance and cognitive load and ranked them in
order of this impact. There are a few key lessons from this analysis that can be used to
inform DDA systems and serious game design more broadly, namely:

· Adjusting the absolute difficulty of a task, as seen in Zone 4, to the ideal
challenge level may engender a flow state. Flow states have been shown to
reduce extraneous cognitive load and positively impact germane cognitive load
(Chang et al., 2017; Chang et al., 2018).

Figure 12. Zone 6 with grey skies, rain drops and the distance display.
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· Audio directions and recall are difficult when combined with other tasks (Knight
& Tlauka, 2017), in this case driving or following, and have an impact on both
cognitive load (Klatzky et al., 2006) and performance.

· Weather and lighting effects, not impacting gameplay mechanics (Zone 6 to
8 respectively), have little effect on either cognitive load or performance, but may
help increase engagement (Roberts & Patterson, 2017).

· Tasks that require distance judgment and constant in-game responses, for ex-
ample maintaining a distance behind a vehicle (Zones 5 and 6), navigating a
narrow space (Zone 7), or judging when it is clear to drive (Zone 10), have a
strong impact on cognitive load and performance.

· Reducing extraneous details and variables (Zone 8) by limiting interactions or
field of view can make a task easier and help reduce cognitive load, likely due to
reduced extraneous cognitive load (Skulmowski & Xu, 2021; Sweller et al.,
2019).

From these tasks and mechanics, an understanding of how different types of
challenges can be used to impact cognitive load and performance emerges. Extrap-
olating the type of task into different games and scenarios to validate the findings in
other game genres and mechanics is warranted. However, results indicate that me-
chanics can be combined and varied in different ways to impact challenge, making a
serious game either easier or harder in deterministic ways.

Our findings show that while there may be a connection between cognitive load and
performance, this relationship is not always clear or obvious. For example, Zone 4 was
one of the hardest rated zones for performance, but one of the lowest for cognitive load.
Conversely the challenges in Zone 10 were rated high for both cognitive load and
performance, highlighting the need for careful consideration of performance or cog-
nitive load in design choices. A decrease in cognitive load, paired with an increase in
performance provides an indication of mastery of the challenges and game play el-
ements. While also considered as training effect, this occurs over the three levels as
players’ performance and cognitive load improve. Continued gameplay at this level of
challenge would likely lead to boredom or frustration as a player needs to be continually
challenged in the appropriate way (Hamari et al., 2016). Ideally, measuring cognitive
load and performance will help inform a highly effective DDA system – if cognitive
load is too high game challenge can be altered, or additional tasks tweaked to modify
the cognitive burden. Similarly, if the intrinsic game difficulty is too hard, or easy, it can
be modified to help improve flow or engagement to enhance the learning outcomes
(Skulmowski & Xu, 2021; Sweller et al., 2019). Performance of primary tasks and
additional tasks can be measured and compared with cognitive load to help strike the
correct balance between game difficulty and learning content.

Previous research (Seyderhelm & Blackmore, 2021) suggests that dual adaptive
measures using cognitive load and performance have a greater chance of success than
single measures. Also, it is suggested that adapting multiple elements has a correlation
with greater efficacy for DDA systems. The findings of this research highlight the value
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in measuring both performance and cognitive load, supporting the premise for dual
adaption systems in learning contexts (Figure 13).

Another valuable aspect of measuring both performance and cognitive load is that
this data may further enhance and empower after action review (AAR). Research has
shown that a quality AAR can improve training efficacy significantly (Keiser &
Arthur Jr, 2021). Being able to report on a player’s cognitive load over the duration of
the intervention, or training exercise, can reveal a great deal about how that person is
learning and journeying towards mastery. Cognitive load theory outlines that as
information is fully understood it is stored in memory schema leading to a lowering of
cognitive load (Sweller, 2011). Similarly, as a person understands a topic it is ex-
pected that their performance improves. Therefore, as performance improves and
cognitive load lowers, we can surmise that the learner has achieved mastery of that
content. This is important in some circumstances and may be useful as an AAR report
to inform training development and future deployment or enhance the direction of
future training.

8 Conclusion

This research explored how performance and cognitive load are impacted in simulated
driving tasks and validated a novel implementation of the detection response task - the
virDRT. We developed an easy to implement, robust and cost-effective cognitive load
measure that can be applied to almost any game or simulation environment through an
in-game user interface (UI) element and the use of a standard video game controller.
Importantly, the results of this research confirm that this implementation does not
impact on task performance. In doing this, we contribute an approach to make real-time

Figure 13. The dual measure and multi-adaption concept.
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cognitive load measures more accessible for use in a wider range of games and
simulations suitable for real-world applications. By detailing the challenge level of
different tasks, and the cognitive burden thereof, the identified tasks and challenges
represent adaption measures that can be used to modify difficulty more accurately and
confidently in other game-based environments.

Some limitations were present in this research, principally pertaining to sample size
and gender balance.With 31 participants and only 9 female participants, a larger sample
size and greater parity between genders would be preferable. As discussed in Section 5,
the limited sample size led to an uneven balance in the Unity randomization function.
Future research should use a stratified randomization method to ensure greater balance
in random functions, tasks, levels, or assignments. The implementation of the virDRT
used a specific controller type, game genre, and interface implementation. To ensure the
robustness of the virDRT, further research should explore different control mechanisms
for the virDRT for use on a wide range of hardware and game-play types. It will also be
worth exploring the efficacy of the DDAmechanism when applied to complex learning
material (e.g. chemistry or physics), particularly as this learning content may not be
assimilated easily by all players. The value of measuring cognitive load and perfor-
mance to inform a DDA mechanism presents as a more effective method of DDA for
serious games and simulations than a single measure approach. While performance and
cognitive load are linked, there are clear instances where having a measure of each is
beneficial. This work has shown the value in measuring both, and the work serves as a
useful launching point for future research. Specifically, the results of this paper form a
foundation for future research exploring the implementation of a dual measure and
multiple-adaption DDA system that considers the impact of this on both training
performance and trainee experience. In doing so, the research presented contributes
important insights for the development of effective serious games and simulation
training platforms.
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